Noticias sobre Python y Datos de la semana, episodio 73 🐍⚙️
En resumen: Versiones nuevas de JupySQL, Modin, Prefect y más, machine learning "doble", detección de comunidades en grafos, ojo a la chi2 de scikit-learn, y noticias del viejo Spyder
https://astrojuanlu.substack.com/p/episodio-73
Apoya el noticiero suscribiéndote por correo 📬
#python #pydata #jupysql #ploomber #modin #prefect #doubleml #networkx #sklearn #spyder
#python #PyData #jupysql #ploomber #modin #prefect #DoubleML #networkx #Sklearn #spyder
1. Stats/’metrics recap:
- Conditional Expectation Functions and how to model them
- Convergence rates
Both play a crucial role for #DoubleML and students tend to have no good intuition what the latter means
https://nbviewer.org/github/MCKnaus
Hi! #introduction by paper
Do you 👍 #causalML to estimate CATEs? Me too 🤓
With Phillip Heiler, I take a step back and ask what CATEs actually mean if a 0/1 "treatment" is itself heterogeneous (binarized multi trmt or multi trmt versions).
2 new features of a 1yo paper:
You 👍 intution on #causalinference?
😀-based intro to the issue https://t.co/WkDIf9HxyN
You 👍 #econometrics theory?
Updated #DoubleML theory allows no. of trmts -> ∞ -> extreme pscores (limited overlap) https://arxiv.org/abs/2110.01427
#introduction #causalml #causalinference #econometrics #DoubleML