Jon Awbrey · @Inquiry
27 followers · 80 posts · Server mathstodon.xyz

• 2.2
inquiryintoinquiry.com/2020/02

Table 6 outlines a for based on two types of , both of variable \(k\)-ary scope.
inquiryintoinquiry.files.wordp

In the second type of connective a concatenation of propositional expressions in the form \(e_1 ~ e_2 ~ \ldots ~ e_{k-1} ~ e_k\) indicates all the propositions \(e_1, e_2, \ldots, e_{k-1}, e_k\) are true, in other words, their is true.

#logicalconjunction #LogicalConnectives #PropositionalCalculus #syntax #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
27 followers · 79 posts · Server mathstodon.xyz

• 2.1
inquiryintoinquiry.com/2020/02

Table 6 outlines a for based on two types of , both of variable \(k\)-ary scope.
inquiryintoinquiry.files.wordp

In the first type of connective a bracketed list of propositional expressions in the form \(\texttt{(} e_1 \texttt{,} e_2 \texttt{,} \ldots \texttt{,} e_{k-1} \texttt{,} e_k \texttt{)}\) indicates exactly one of the propositions \(e_1, e_2, \ldots, e_{k-1}, e_k\) is false.

#LogicalConnectives #PropositionalCalculus #syntax #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
25 followers · 69 posts · Server mathstodon.xyz