The history of a fantastic resource #OEIS https://arxiv.org/pdf/2301.03149.pdf
Is there any kind of a group for private investigators in training, particularly in Canada?
#oeis #privateinvestigation #privateinvestigators #privateinvestigator #picanada #canada #pilicense #pi #ontario #securitytraining
#OEIS #privateinvestigation #privateinvestigators #privateinvestigator #picanada #canada #pilicense #pi #ontario #securitytraining
ITM! Show 1384 Number Theory:
#numberTheory
#numerology
#OEIS A074350
#numbertheory #numerology #OEIS
ITM! Show 1382 Number Theory:
#numberTheory
#numerology
#semiprime
#OEIS A275600, A265438
1382 can be written with only 0's, 1's, and 2's from base 2 to base 6.
It is also a palindrome base 5; 21012.
#semiprime #numbertheory #numerology #OEIS
ITM! Show 1376 Number Theory:
#numberTheory
#numerology
#cubeful
#OEIS A127337, A122692
It is also the 11th, 25 sided polygonal number.
The 10 consecutive primes are: 109, 113, 127, 131, 137, 139, 149, 151, 157, 163
#numerology #numbertheory #OEIS #cubeful
ITM! Show 1374 Number Theory:
#numberTheory
#numerology
#OEIS A025345
#numbertheory #numerology #OEIS
#numberTheory
#numerology
#OEIS A333642
The number of regions in a polygon whose boundary consists of n+2 equally space points around a semicircle and three equally spaced points along the diameter (a total of n+3 points). For n=12, the number of regions are 1373.
#OEIS #numbertheory #numerology
ITM! Show 1373 Number Theory:
#numberTheory
#numerology
#primeNumber
#nonComposite
#OEIS A068669
1373 is the 8th 49-sided polygonal number.
#numbertheory #nonComposite #OEIS #numerology #primeNumber