In the de Broglie-Bohm interpretation of quantum mechanics, the wave function acts as a pilot wave that obeys the Schrödinger equation. The guiding equation then determines the trajectories quantum particles take, removing the "measurement problem" from the theory.
\[\dfrac{\mathrm{d}\mathbf{Q}}{\mathrm{d}t}(t) = \dfrac{\hbar}{m} \operatorname{Im}\left(\dfrac{\nabla \psi}{\psi}\right)(\mathbf{Q}, t)\]
#BohmianMechanics #QuantumMechanics #SchrodingerEquation #GuidingEquation #WaveFunction
#wavefunction #guidingequation #schrodingerequation #quantummechanics #bohmianmechanics
In the de Broglie-Bohm interpretation of quantum mechanics, the wave function acts as a pilot wave that obeys the Schrödinger equation. The guiding equation then determines the trajectories quantum particles take, removing the "measurement problem" from a theory.
\[\dfrac{\mathrm{d}\mathbf{Q}}{\mathrm{d}t}(t) = \dfrac{\hbar}{m} \operatorname{Im}\left(\dfrac{\nabla \psi}{\psi}\right)(\mathbf{Q}, t)\]
#BohmianMechanics #QuantumMechanics #SchrodingerEquation #GuidingEquation #WaveFunction
#wavefunction #guidingequation #schrodingerequation #quantummechanics #bohmianmechanics
In the de Broglie-Bohm interpretation of quantum mechanics, the wave function acts as a pilot wave that obeys the Schrödinger equation. The guiding equation then determines the trajectories quantum particles take, removing the "measurement problem" from a theory.
\[\dfrac{d\mathbf{Q}}{dt}(t) = \dfrac{\hbar}{m} \operatorname{Im}\left(\dfrac{\nabla \psi}{\psi}\right)(\mathbf{Q}, t)\]
#BohmianMechanics #QuantumMechanics #SchrodingerEquation #GuidingEquation #WaveFunction
#wavefunction #guidingequation #schrodingerequation #quantummechanics #bohmianmechanics
\(\text{In the de Broglie-Bohm interpretation of quantum mechanics, the wave function acts as a pilot wave that obeys the Schrödinger equation. The guiding equation then determines the trajectories quantum particles take, removing the "measurement problem" from a theory.}\)
\[{\dfrac{d\mathbf{Q}}{dt}(t) = \dfrac{\hbar}{m} \operatorname{Im}\left(\dfrac{\nabla \psi}{\psi}\right)(\mathbf{Q}, t)\]
#BohmianMechanics #QuantumMechanics #SchrodingerEquation #GuidingEquation #WaveFunction
#wavefunction #guidingequation #schrodingerequation #quantummechanics #bohmianmechanics
\(\text{In the de Broglie-Bohm interpretation of quantum mechanics, the wave function acts as a pilot wave that obeys the Schrödinger equation. The guiding equation then determines the trajectories quantum particles take, removing the "measurement problem" from a theory.\}\)
\[{\dfrac{d\mathbf{Q}}{dt}(t) = \dfrac{\hbar}{m} \operatorname{Im}\left(\dfrac{\nabla \psi}{\psi}\right)(\mathbf{Q}, t)\]
#BohmianMechanics #QuantumMechanics #SchrodingerEquation #GuidingEquation #WaveFunction\]
#wavefunction #guidingequation #schrodingerequation #quantummechanics #bohmianmechanics
In the de Broglie-Bohm interpretation of quantum mechanics, the wave function acts as a pilot wave that obeys the Schrödinger equation. The guiding equation then determines the trajectories quantum particles take, removing the "measurement problem" from a theory.
\[\boxed{\dfrac{d\mathbf{Q}}{dt}(t) = \dfrac{\hbar}{m} \operatorname{Im}\left(\dfrac{\nabla \psi}{\psi}\right)(\mathbf{Q}, t)}\]
#BohmianMechanics #QuantumMechanics #SchrodingerEquation #GuidingEquation #WaveFunction
#wavefunction #guidingequation #schrodingerequation #quantummechanics #bohmianmechanics
In the de Broglie-Bohm interpretation of quantum mechanics, the wave function acts as a pilot wave that obeys the Schrödinger equation. The guiding equation then determines the trajectories quantum particles take, removing the "measurement problem" from a theory. This is an example of hidden variables theory that is explicitly non-local.
\[\dfrac{d\mathbf{Q}}{dt}(t) = \dfrac{\hbar}{m} \operatorname{Im}\left(\dfrac{\nabla \psi}{\psi}\right)(\mathbf{Q}, t)\]
#quantummechanics #bohmianmechanics
In the de Broglie-Bohm interpretation of quantum mechanics, the wave function acts as a pilot wave that obeys the Schrödinger equation. The guiding equation then determines the trajectories quantum particles take, removing the "measurement problem" from a theory. Thi is an example of hidden variables theory that is explicitly non-local.
\[\dfrac{d\mathbf{Q}}{dt}(t) = \dfrac{\hbar}{m} \operatorname{Im}\left(\dfrac{\nabla \psi}{\psi}\right)(\mathbf{Q}, t)\]
#quantummechanics #bohmianmechanics
#BarryLoewer - #Events in #QuantumMechanics and #Relativity
https://www.youtube.com/watch?v=gxefi2CgXog&ab_channel=CloserToTruth
#Science '#Philosophy #PhilosophyOfScience #Foundations #LawsOfPhysics #LawsOfNature #TheLawsOfNature #TheLawsOfPhysics #Reductionism #QM #GR #GeneralRelativity #SpecialRelativity #MeasurementProblem #TheMeasurementProblem #WaveFunction #WaveFunctionCollapse #Decoherence #DavidBohm #BohmianMechanics #EverettianMechanics #ManyWorlds #ManyWorldsInterpretation #HiddenVariables #CloserToTruth #RobertKuhn
#RobertKuhn #CloserToTruth #hiddenvariables #manyworldsinterpretation #ManyWorlds #everettianmechanics #bohmianmechanics #davidbohm #Decoherence #wavefunctioncollapse #wavefunction #themeasurementproblem #measurementproblem #specialrelativity #generalrelativity #gr #qm #reductionism #thelawsofphysics #thelawsofnature #lawsofnature #lawsofphysics #foundations #philosophyofscience #philosophy #science #relativity #quantummechanics #events #barryloewer