Jon Awbrey · @Inquiry
231 followers · 1729 posts · Server mathstodon.xyz

Logic Syllabus • Discussion 1
inquiryintoinquiry.com/2023/06

Re: Logic Syllabus ( inquiryintoinquiry.com/logic-s )
Re: Laws of Form ( groups.io/g/lawsofform/topic/l )
❝_❞ John Mingers ( groups.io/g/lawsofform/message )

❝In a previous post you mentioned the minimal negation operator. Is there also the converse of this, i.e. an operator which is true when exactly one of its arguments is true? Or is this just XOR?❞

Yes, the “just one true” operator is a very handy tool. We discussed it earlier under the headings of “genus and species relations” or “radio button logic”. Viewed as a venn diagram it describes a partition of the universe of discourse into mutually exclusive and exhaustive regions.

Reading \(\texttt{(} x_1 \texttt{,} \ldots \texttt{,} x_m \texttt{)}\) to mean just one of \(x_1, \ldots, x_m\) is false, the form \(\texttt{((} x_1 \texttt{),} \ldots \texttt{,(} x_m \texttt{))}\) means just one of \(x_1, \ldots, x_m\) is true.

For two logical variables, though, the cases “condense” or “degenerate” and saying “just one true” is the same thing as saying “just one false”.

\[\texttt{((} x_1 \texttt{),(} x_2 \texttt{))} = \texttt{(} x_1 \texttt{,} x_2 \texttt{)} = x_1 + x_2 = \textsc{xor} (x_1, x_2).\]

There's more information on the following pages.

Minimal Negation Operators
oeis.org/wiki/Minimal_negation

Related Truth Tables
oeis.org/wiki/Minimal_negation

Genus, Species, Pie Charts, Radio Buttons
inquiryintoinquiry.com/2021/11

Related Discussions
inquiryintoinquiry.com/?s=Radi



#truthtable #radiobuttonlogic #PropositionalCalculus #CactusLanguage #xor #exclusivedisjunction #minimalnegationoperator #logicalgraph #Peirce #booleanvaluedfunction #booleanfunction #booleandomain #logicsyllabus #logic

Last updated 1 year ago

Jon Awbrey · @Inquiry
231 followers · 1712 posts · Server mathstodon.xyz

Logic Syllabus • 3
inquiryintoinquiry.com/logic-s

Logical Concepts
oeis.org/wiki/Logic_Syllabus#L

Ampheck • oeis.org/wiki/Ampheck
Boolean Domain • oeis.org/wiki/Boolean_domain
Boolean Function • oeis.org/wiki/Boolean_function
Boolean-Valued Function • oeis.org/wiki/Boolean-valued_f
Differential Logic • oeis.org/wiki/Differential_log
Logical Graph • oeis.org/wiki/Logical_Graphs
Minimal Negation Operator • oeis.org/wiki/Minimal_negation
Multigrade Operator • oeis.org/wiki/Multigrade_opera
Parametric Operator • oeis.org/wiki/Parametric_opera
Peirce's Law • oeis.org/wiki/Peirce%27s_law
Propositional Calculus • oeis.org/wiki/Propositional_ca
Sole Sufficient Operator • oeis.org/wiki/Sole_sufficient_
Truth Table • oeis.org/wiki/Truth_table
Universe of Discourse • oeis.org/wiki/Universe_of_disc
Zeroth Order Logic • oeis.org/wiki/Zeroth_order_log




#logicsyllabus #logic #zerothorderlogic #UniverseOfDiscourse #truthtable #solesufficientoperator #PropositionalCalculus #peirceslaw #parametricoperator #multigradeoperator #minimalnegationoperator #logicalgraph #DifferentialLogic #booleanvaluedfunction #booleanfunction #booleandomain #ampheck

Last updated 1 year ago

Jon Awbrey · @Inquiry
30 followers · 99 posts · Server mathstodon.xyz

• 4.1
inquiryintoinquiry.com/2020/02

There are \(2^n\) elements in \(A,\) often pictured as the cells of a or the nodes of a .

There are \(2^{2^n}\) functions from \(A\) to \(\mathbb{B},\) accordingly pictured as all the ways of painting the cells of a venn diagram or the nodes of a hypercube with a palette of two colors.




#DifferentialLogic #LogicalGraphs #BooleanFunctions #booleandomain #PropositionalCalculus #logic #semiotics #Peirce #hypercube #venndiagram #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
29 followers · 98 posts · Server mathstodon.xyz

• 4
inquiryintoinquiry.com/2020/02

Special Classes of Propositions —

Before moving on, let’s unpack some of the assumptions, conventions, & implications involved in the array of concepts & notations introduced above.

A universe \(A^\bullet = [a_1, \ldots, a_n]\) based on the logical features \(a_1, \ldots, a_n\) is a set \(A\) plus the set of all possible functions from the space \(A\) to the \(\mathbb{B} = \{0, 1\}.\)

#BooleanFunctions #logic #booleandomain #DifferentialPropositionalCalculus

Last updated 2 years ago