#DifferentialPropositionalCalculus • 4.10
• https://inquiryintoinquiry.com/2020/02/25/differential-propositional-calculus-4/
The #BasicPropositions \(a_i : \mathbb{B}^n \to \mathbb{B}\) are both linear and positive. So these two kinds of propositions, the linear and the positive, may be viewed as two different ways of generalizing the class of basic propositions.
Related Subjects —
#CoordinatePropositions #SimplePropositions
# LinearPropositions #SingularPropositions
#Logic #LogicalGraphs #DifferentialLogic
#PropositionalCalculus #BooleanFunctions
#BooleanFunctions #PropositionalCalculus #DifferentialLogic #LogicalGraphs #logic #singularpropositions #simplepropositions #coordinatepropositions #basicpropositions #DifferentialPropositionalCalculus
#DifferentialPropositionalCalculus • 4.9
• https://inquiryintoinquiry.com/2020/02/25/differential-propositional-calculus-4/
In each family the rank \(k\) ranges from \(0\) to \(n\) and counts the number of positive appearances of #CoordinatePropositions \(a_1, \ldots, a_n\) in the resulting expression. For example, when \(n=3\) the #LinearProposition of rank \(0\) is \(0,\) the #PositiveProposition of rank \(0\) is \(1,\) and the #SingularProposition of rank \(0\) is \(\texttt{(}a_1\texttt{)} \texttt{(}a_2\texttt{)} \texttt{(}a_3\texttt{)}.\)
#logic #singularproposition #positiveproposition #linearproposition #coordinatepropositions #DifferentialPropositionalCalculus