When you put off your doctoral dissertation to work on a stubborn problem.
https://www.quantamagazine.org/ninth-dedekind-number-found-by-two-independent-groups-20230801/
"Van Hirtum believes a similar jump in computer processing power will be required to calculate the 10th #Dedekind number. 'If we were doing it now, it would require processing power equal to the total power output of the sun,' he said, which makes it 'practically impossible' to calculate."
Just hold my beer while I plug into my Dyson sphere.
Here's how a colleague of mine managed to compute the 9th #Dedekind number, an open question in mathematics since 1991: https://www.youtube.com/watch?v=kFfmmB3irWU
For this endeavor, he used our Noctua 2 cluster in Paderborn, in particular our worldwide unique FPGA infrastructure.
A more elaborate text: https://pc2.uni-paderborn.de/about-pc2/announcements/news-events/article/computing-the-ninth-dedekind-number-using-fpga-accelerated-supercomputer-1
All the details are in our preprint: https://arxiv.org/abs/2304.03039
Oh, and by the way... It's 42! Well, at least it's 42 digits. The number itself is 286386577668298411128469151667598498812366.
Mathematicians Christian Jäkel and Lennart Van Hirtum et al. simultaneously discover the 42-digit Dedekind number after 32 years of trying.
The exact values of the Dedekind numbers are known for \(0\leq n\leq9\):
\(2,3,6,20,168,7581,7828354,2414682040998,\)
\(56130437228687557907788,\)
\(286386577668298411128469151667598498812366\)
(sequence A000372 in the OEIS)
Summation formula👇
Kisielewicz (1988) rewrote the logical definition of antichains into the following arithmetic formula for the Dedekind numbers:
\[\displaystyle M(n)=\sum_{k=1}^{2^{2^n}} \prod_{j=1}^{2^n-1} \prod_{i=0}^{j-1} \left(1-b_i^k b_j^k\prod_{m=0}^{\log_2 i} (1-b_m^i+b_m^i b_m^j)\right)\]
where \(b_i^k\) is the \(i\)th bit of the number \(k\), which can be written using the floor function as
\[\displaystyle b_i^k=\left\lfloor\frac{k}{2^i}\right\rfloor - 2\left\lfloor\frac{k}{2^{i+1}}\right\rfloor.\]
However, this formula is not helpful for computing the values of \(M(n)\) for large \(n\) due to the large number of terms in the summation.
Asymptotics:
The logarithm of the Dedekind numbers can be estimated accurately via the bounds
\[\displaystyle{n\choose \lfloor n/2\rfloor}\le \log_2 M(n)\le {n\choose \lfloor n/2\rfloor}\left(1+O\left(\frac{\log n}{n}\right)\right).\]
Here the left inequality counts the number of antichains in which each set has exactly \(\lfloor n/2\rfloor\) elements, and the right inequality was proven by Kleitman & Markowsky (1975).
#DedekindNumber #Dedekind #NumberTheory #Mathematics #Sequence #Discovery #Mathematicians #Challenging #RichardDedekind #DifficultProblem #MathHistory #Pustam #ChallengingProblem #EGR #PustamRaut
#pustamraut #egr #challengingproblem #pustam #mathhistory #difficultproblem #richarddedekind #challenging #mathematicians #discovery #sequence #mathematics #numbertheory #dedekind #dedekindnumber
Mathematicians Christian Jäkel and Lennart Van Hirtum et al. simultaneously discover the 42-digit Dedekind number after 32 years of trying.
The exact values of the Dedekind numbers are known for \(0\leq n\leq9\):
\(2,3,6,20,168,7581,7828354,2414682040998,56130437228687557907788,286386577668298411128469151667598498812366\)
(sequence A000372 in the OEIS)
Summation formula👇
Kisielewicz (1988) rewrote the logical definition of antichains into the following arithmetic formula for the Dedekind numbers:
\[\displaystyle M(n)=\sum_{k=1}^{2^{2^n}} \prod_{j=1}^{2^n-1} \prod_{i=0}^{j-1} \left(1-b_i^k b_j^k\prod_{m=0}^{\log_2 i} (1-b_m^i+b_m^i b_m^j)\right)\]
where \(b_i^k\) is the \(i\)th bit of the number \(k\), which can be written using the floor function as
\[\displaystyle b_i^k=\left\lfloor\frac{k}{2^i}\right\rfloor - 2\left\lfloor\frac{k}{2^{i+1}}\right\rfloor.\]
However, this formula is not helpful for computing the values of \(M(n)\) for large \(n\) due to the large number of terms in the summation.
Asymptotics:
The logarithm of the Dedekind numbers can be estimated accurately via the bounds
\[\displaystyle{n\choose \lfloor n/2\rfloor}\le \log_2 M(n)\le {n\choose \lfloor n/2\rfloor}\left(1+O\left(\frac{\log n}{n}\right)\right).\]
Here the left inequality counts the number of antichains in which each set has exactly \(\lfloor n/2\rfloor\) elements, and the right inequality was proven by Kleitman & Markowsky (1975).
#DedekindNumber #Dedekind #NumberTheory #Mathematics #Sequence #Discovery #Mathematicians #Challenging #RichardDedekind #DifficultProblem #MathHistory #Pustam #ChallengingProblem #EGR #PustamRaut
#pustamraut #egr #challengingproblem #pustam #mathhistory #difficultproblem #richarddedekind #challenging #mathematicians #discovery #sequence #mathematics #numbertheory #dedekind #dedekindnumber
Ich hatte immer gedacht, das sei 42.
Stimmt aber gar nicht.
Und hey - Paderborn!
Mathematik: Neunte Dedekind-Zahl geknackt. Berechnung der 42-stelligen Zahl benötigte Jahre der Vorbereitung und fünf Monate Rechenzeit. #Mathematik #Dedekind #Zahlenfolgen
https://www.scinexx.de/news/technik/mathematik-neunte-dedekind-zahl-geknackt/
#mathematik #dedekind #zahlenfolgen