ErdΕs-Straus conjecture... It was necessary to write the solution in a more General form:
\[ \frac{t}{q}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \]
Decomposing on the factors as follows: πΒ²βπ Β²=(πβπ )(π+π )=2ππΏ
\[ x=\frac{p(p-s)}{tL-q} \]
\[ y=\frac{p(p+s)}{tL-q} \]
π§=πΏ
Decomposing on the factors as follows: πΒ²βπ Β²=(πβπ )(π+π )=ππΏ
\[ x=\frac{2p(p-s)}{tL-q} \]
\[ y=\frac{2p(p+s)}{tL-q} \]
π§=πΏ
#Diophantine #equation #number-theory #holistic_algebra #diophantine
#holistic_algebra #number #equation #diophantine
π΄Β²+π΄π΅+π΅Β²=πΆΒ²
πΉΒ²+πΉπ+πΒ²=πΆΒ²
Such a system is solved as standard. First, we write down the parametrization of one equation.
π΄=πΒ²βπ Β²
π΅=π (π +2π)
πΆ=πΒ²+ππ +π Β²=π₯Β²+π₯π¦+π¦Β²
πΉ=π₯Β²βπ¦Β²
π=π¦(π¦+2π₯)
And then we find the parameterization for the necessary parameters.
π=2πΒ²+2ππ‘βπ‘Β²β3ππ+πΒ²
π =βπΒ²+2ππ‘+2π‘Β²β3π‘π+πΒ²
π¦=πΒ²+ππ‘+π‘Β²βπΒ²
π₯=πΒ²+ππ‘+π‘Β²β3(π+π‘)π+2πΒ²
#Diophantine #equation #number-theory #holistic_algebra #diophantine
#holistic_algebra #number #equation #diophantine
π΄Β³+π΅Β³=πΆΒ³+πΒ³
π΄=(3πβπ‘)((81πβ΅β108πβ΄π‘+63πΒ³π‘Β²β27πΒ²π‘Β³+6ππ‘β΄βπ‘β΅)π₯Β²+3(9πΒ³β9πΒ²π‘+3ππ‘Β²βπ‘Β³)π₯π¦+(3πβ2π‘)π¦Β²)
π΅=π‘(3π(27πβ΄β36πΒ³π‘+21πΒ²π‘Β²β6ππ‘Β³+π‘β΄)π₯Β²+π‘Β³π₯π¦β(3πβ2π‘)π¦Β²)
πΆ=(3πβπ‘)(3π(27πβ΄β36πΒ³π‘+21πΒ²π‘Β²β6ππ‘Β³+π‘β΄)π₯Β²+(3πβπ‘)Β³π₯π¦+(3πβ2π‘)π¦Β²)
π=π‘((β162πβ΅+216πβ΄π‘β126πΒ³π‘Β²+45πΒ²π‘Β³β9ππ‘β΄+π‘β΅)π₯Β²β3(18πΒ³β18πΒ²π‘+6ππ‘Β²βπ‘Β³)π₯π¦β(3πβ2π‘)π¦Β²)
#Diophantine #equation #number-theory #holistic_algebra #diophantine
#holistic_algebra #number #equation #diophantine
π΄Β³+π΅Β³=πΆΒ³+πΒ³
π΄=π(3(πΒ³β2π‘Β³)(πΒ²+ππ‘+π‘Β²)π₯Β²+3(π+π‘)(πΒ³β2π‘Β³)π₯π¦+(π+π‘)(πΒ²βπ‘Β²)π¦Β²)
π΅=π‘(π+π‘)(3(πβ΄+πΒ²π‘Β²+π‘β΄)π₯Β²+3π‘Β³π₯π¦+(π‘Β²βπΒ²)π¦Β²)
πΆ=π(π+π‘)(3(πβ΄+πΒ²π‘Β²+π‘β΄)π₯Β²+3πΒ³π₯π¦+(πΒ²βπ‘Β²)π¦Β²)
π=π‘(β3(2πΒ³βπ‘Β³)(πΒ²+ππ‘+π‘Β²)π₯Β²β3(π+π‘)(2πΒ³βπ‘Β³)π₯π¦+(π+π‘)(π‘Β²βπΒ²)π¦Β²)
#Diophantine #equation #number-theory #holistic_algebra #diophantine
#holistic_algebra #number #equation #diophantine
(π΄βπ΅)Β³+π΄Β³+(π΄+π΅)Β³=(πΆβπ)Β³+πΆΒ³+(πΆ+π)Β³
π΄=64πβ΄π‘Β³π₯Β²+2π‘π¦Β²
π΅=2π(27πβΆβ18πβ΄π‘Β²+20πΒ²π‘β΄+8π‘βΆ)π₯Β²+(9πΒ²+2π‘Β²)(3πΒ²β2π‘Β²)π₯π¦+2ππ¦Β²
πΆ=8π‘πΒ²(9πβ΄β4πΒ²π‘Β²+4π‘β΄)π₯Β²+8ππ‘(3πΒ²β2π‘Β²)π¦π₯+2π‘π¦Β²
π=64πΒ³π‘β΄π₯Β²+(3πΒ²β2π‘Β²)Β²π₯π¦+3ππ¦Β²
#Diophantine #equation #number-theory #holistic_algebra #diophantine
#holistic_algebra #number #equation #diophantine
(π΄βπ΅)Β³+π΄Β³+(π΄+π΅)Β³=(πΆβπ)Β³+πΆΒ³+(πΆ+π)Β³
π΄=2(36πΒ²β4ππ+πΒ²)
π΅=64πΒ²βππ+3πΒ²
πΆ=2(32πΒ²+πΒ²)
π=74πΒ²β11ππ+3πΒ²
AβB>0 and CβQ>0
π΄=528πΒ²β40ππ+πΒ²
π΅=64πΒ²β25ππ+3πΒ²
πΆ=128πΒ²+πΒ²
π=764πΒ²β95ππ+3πΒ²
#holistic_algebra #number #equation #diophantine
(π΄βπ΅)Β³+π΄Β³+(π΄+π΅)Β²=(πΆβπ)Β³+πΆΒ³+(πΆ+π)Β³
π΄=4(24πΒ²β8ππ+πΒ²)
π΅=177πΒ²β59ππ+6πΒ²
πΆ=4(33πΒ²β10ππ+πΒ²)
π=132πΒ²β49ππ+6πΒ²
#holistic_algebra #number #equation #diophantine
π΄Β³+π΅Β³=πΆΒ³+πΒ³
π΄=1144πΒ²β2024ππβ11176ππ+900πΒ²+9896ππ+27300πΒ²
π΅=β559πΒ²+989ππ+5461ππβ435πΒ²β4826ππβ13335πΒ²
πΆ=273πΒ²β547ππβ2731ππ+269πΒ²+2726ππ+6825πΒ²
π=1092πΒ²β1928ππβ10664ππ+856πΒ²+9424ππ+26040πΒ²
#holistic_algebra #number #equation #diophantine
The result of an attempt to solve this problem. There was the appearance of a new solution to a rather old problem.
https://math.stackexchange.com/questions/4591666/solving-cubic-systems-of-diophantine-equations
The problem of 4 cubes
π΄Β³+π΅Β³=πΆΒ³+πΒ³
π΄=28πΒ²+12ππβ68ππ+2πΒ²β16ππ+42πΒ²
π΅=21πΒ²+ππβ43ππβπΒ²+ππ+21πΒ²
πΆ=42πΒ²+16ππβ100ππ+2πΒ²β20ππ+60πΒ²
π=β35πΒ²β15ππ+85ππβπΒ²+17ππβ51πΒ²
#Diophantine #equation #number-theory #holistic_algebra
#holistic_algebra #number #equation #diophantine
A funny discussion of the solution of one Diophantine equation was singled out separately.
New ideas are very hard to make their way. Although the ideas of holistic algebra are not new. They were just hammered and closed.
Although you can set it simply. How to write a formula for such a Diophantine equation?
\( ax^2+by^2+cz^2=dv^2+tq^2 \)
#Diophantine #equation #number-theory
#number #equation #diophantine
I'm an assistant professor at @WMI_research. I study equations and inequalities in whole numbers, using #lattices and #fourier #analysis.
Iβm also dabbling in something very different: nonlinear dispersive partial differential equations, a type of mathematical model for real things from ocean waves to fibre optic cables.
#maths #math #research #teaching #HigherEducation #WelcomeToMathstodon #Academia #Science #universities #mathed #NumberTheory #diophantine #mathematics #numbers
#numbers #mathematics #diophantine #numbertheory #mathed #universities #science #academia #WelcomeToMathstodon #highereducation #teaching #research #math #maths #analysis #fourier #lattices #introduction
@jbeardsleymath I think Pythagorean triples are just super cool. When I checked wikipedia to make sure that aΒ² + bΒ² = cΒ² is a #Diophantine equation (it is), there was a potentially-interesting list of others?
About Pythagorean triples, I was astounded to find out there's a *formula* for them. It's not even that complicated! One method of proof is to find rational points on the circle, and it boils down to the quadratic formula (really). I found that to be amazing!
Last couple of nights I've been falling asleep on another little mental calculation.
Oh yeah, it's time for another episode of #CountingSheep, bay-bee!
This time we're doing linear #Diophantine equations, i.e. the Euclidean algorithm.