GENERALIZED STOKES THEOREM:
The integral of a differential form \(\omega\) over the boundary \(\partial\Omega\) of some orientable manifold \(\Omega\) is equal to the integral of its exterior derivative \(d\omega\) over the whole of \(\Omega\).
\[\displaystyle\int_{\partial\Omega}\omega=\int_\Omega d\omega\]
#VectorCalculus #DifferentialGeometry #MultivariateCalculus #Calculus #StokesTheorem #GeneralizedStokesTheorem #Calculus #FundamentalTheorem #Manifold #Boundary #ExteriorDerivative #Stokes
#Stokes #exteriorderivative #boundary #manifold #fundamentaltheorem #generalizedstokestheorem #stokestheorem #calculus #multivariatecalculus #differentialgeometry #vectorcalculus
GENERALIZED STOKES THEOREM:
The integral of a differential form \(\omega\) over the boundary \(\partial\Omega\) of some orientable manifold \(\Omega\) is equal to the integral of its exterior derivative \(d\omega\) over the whole of \(\Omega\).
\[\displaystyle\int_{\partial\Omega}\omega=\int_\Omega d\omega\]
#VectorCalculus #DifferentialGeometry #MultivariateCalculus #Calculus #StokesTheorem #GeneralizedStokesTheorem #Calculus #FundamentalTheorem #Manifold #Boundary #ExteriorDerivative #Stokes
#Stokes #exteriorderivative #boundary #manifold #fundamentaltheorem #generalizedstokestheorem #stokestheorem #calculus #multivariatecalculus #differentialgeometry #vectorcalculus
GENERALIZED STOKES THEOREM:
The integral of a differential form \(\omega\) over the boundary \(\partial\Omega\) of some orientable manifold \(\Omega\) is equal to the integral of its exterior derivative \(d\omega\) over the whole of \(\Omega\).
\[\displaystyle\int_{\partial\Omega}\omega=\int_\Omega d\omega\]
#VectorCalculus #DifferentialGeometry #MultivariateCalculus #Calculus #StokesTheorem #GeneralizedStokesTheorem #Calculus #FundamentalTheorem #Manifold #Boundary #ExteriorDerivative #Stokes
#Stokes #exteriorderivative #boundary #manifold #fundamentaltheorem #generalizedstokestheorem #stokestheorem #calculus #multivariatecalculus #differentialgeometry #vectorcalculus