Aaron · @hosford42
872 followers · 8359 posts · Server techhub.social

Many years ago, I wrote a program that generated fractal music using just intonation. You could select which one you liked the most, and it would apply a genetic algorithm based on your feedback to evolve ever cooler pieces. Now I'm seeing image generators that work on similar principles and it makes me want to dig out the old code.





#geneticalgorithms #geneticprogramming #algorithmiccomposition #justintonation #fractals

Last updated 1 year ago

Daniel Pelliccia · @danielpelliccia
89 followers · 192 posts · Server aus.social

📯 New blog post: "
Wavelength selection with a genetic algorithm"

If you're interested in , especially NIR or Raman, or , a suitable selection of wavelength bands is often needed to produce a good statistical model.

Genetic algorithms are optimisation procedures loosely inspired by the mechanism of evolution by natural selection.

In this point, I'm working through an example of variable selection with a genetic algorithm for regression.


nirpyresearch.com/wavelength-s

#spectroscopy #chemometrics #machinelearning #geneticalgorithms #nearinfrared

Last updated 1 year ago

RPA · @rpaweb
13 followers · 19 posts · Server ruby.social
Rafael Pérez · @rafael
0 followers · 1 posts · Server mastodon.acm.org

I wish to say hello to everyone here. My name is Rafael, I'm a software developer and member of ACM since 2008.

These are some of my repositories:

github.com/rperez-rosario/Adap

A minimal adaptive computing framework written in C#, can be used as a base for work on Genetic Algorithms.

github.com/rperez-rosario/HPCa

A game of chess programmed using HP-PL on a HP Graphing Calculator.

#acm #mastodon #introduction #geneticalgorithms #chess

Last updated 1 year ago

grandpa riley · @grandpariley
15 followers · 13 posts · Server dftba.club


hallo! I'm a software dev at a bank based in Regina SK with degrees in CS (my thesis was on ESG portfolio optimization using genetic algos) and propaganda film analysis (my thesis was on food representation in DPRK state sponsored media). I also used to play bass in a bunch of really awful bands and I love to cook

you can ask me anything about any of those things ~!

#introduction #softwaredev #computers #esg #economics #geneticalgorithms #propaganda #dprk #cooking #regina #saskatchewan

Last updated 1 year ago

Gert :debian: :gnu: :linux: · @Gert
200 followers · 665 posts · Server qoto.org

I fenomeni di emergenza in un sistema in evoluzione sembrano essere legati alla comparsa di processi dinamici nuovi rispetto alla loro qualità e imprevedibili sulla base della caratteristica iniziale del sistema. Per questo motivo è difficile modellizzare i fenomeni di emergenza perché il modello in uso può diventare improvvisamente inadeguato a delineare nuove manifestazioni dinamiche e quindi la vera identità del sistema.

In questa simulazione (nel primo video la registrazione di una sessione) ho cercato di costruire un metamodello che descriva alcuni fenomeni di emergenza durante l’evoluzione del sistema dinamico organismo-ambiente.
Usando algoritmi genetici ho realizzato un sistema di agenti artificiali che interagiscono risolvendo una versione spaziale del Dilemma del Prigioniero Iterato (Axelrod, 1984; Axelrod e Dion, 1988).

Il sistema, compresso tra i vincoli di una crescente complessità interna e l’impossibilità di scindersi, si mantiene spontaneamente entro valori di entropia che gli consentono di mantenere coerenza e “identità” nel tempo, permettendogli di far emergere diversi nuovi equilibri di Nash nella tabella dei payoff ( cultura? economia? politica?…) che regola gli scambi tra agenti artificiali; i nuovi equilibri di Nash emergenti nella tabella dei payoff facilitano l’emergere di alcuni “clan” che si replicano secondo le dinamiche genetiche del Cross-Over.

Per ogni generazione, le azioni del “clan vincente” contribuiscono a modificare la tabella dei payoff secondo regole più vantaggiose per la loro logica di interazione (cooperare/rifiutare/defezionare).

Ogni volta il nuovo equilibrio di Nash emergente viene mantenuto per alcune generazioni, oscillando tra diversi valori di entropia, finché un nuovo “clan” di agenti virtuali prevale sugli altri, orientando l’intero sistema verso l’emergere di un nuovo equilibrio di Nash nella tabella dei payoff.

#ai #gametheory #geneticalgorithms

Last updated 1 year ago

Gert :debian: :gnu: :linux: · @Gert
200 followers · 665 posts · Server qoto.org

I fenomeni di emergenza in un sistema in evoluzione sembrano essere legati alla comparsa di processi dinamici nuovi rispetto alla loro qualità e imprevedibili sulla base della caratteristica iniziale del sistema. Per questo motivo è difficile modellizzare i fenomeni di emergenza perché il modello in uso può diventare improvvisamente inadeguato a delineare nuove manifestazioni dinamiche e quindi la vera identità del sistema.

In questa simulazione ho cercato di costruire un metamodello che descriva alcuni fenomeni di emergenza durante l’evoluzione del sistema dinamico organismo-ambiente.
Usando algoritmi genetici ho realizzato un sistema di agenti artificiali che interagiscono risolvendo una versione spaziale del Dilemma del Prigioniero Iterato (Axelrod, 1984; Axelrod e Dion, 1988).

Il sistema, compresso tra i vincoli di una crescente complessità interna e l’impossibilità di scindersi, si mantiene spontaneamente entro valori di entropia che gli consentono di mantenere coerenza e “identità” nel tempo, permettendogli di far emergere diversi nuovi equilibri di Nash nella tabella dei payoff ( cultura? economia? politica?…) che regola gli scambi tra agenti artificiali; i nuovi equilibri di Nash emergenti nella tabella dei payoff facilitano l’emergere di alcuni “clan” che si replicano secondo le dinamiche genetiche del Cross-Over.

Per ogni generazione, le azioni del “clan vincente” contribuiscono a modificare la tabella dei payoff secondo regole più vantaggiose per la loro logica di interazione (cooperare/rifiutare/disertare).

Ogni volta il nuovo equilibrio di Nash emergente viene mantenuto per alcune generazioni, oscillando tra diversi valori di entropia, finché un nuovo “clan” di agenti virtuali prevale sugli altri, orientando l’intero sistema verso l’emergere di un nuovo equilibrio di Nash nella tabella dei payoff.

#ai #gametheory #geneticalgorithms

Last updated 1 year ago

Aaron · @hosford42
289 followers · 1394 posts · Server techhub.social

@Artisan_recycler When I was a kid, we had half an acre behind our house. I found some dried wild corn cobs my mom had used for decoration and scattered them in the lot. (She probably would've been mad had she known!) I didn't tend them. I just let them grow on their own. I was always fascinated by exactly what you're describing. It was basically a miniature experiment in evolution. I loved the thought of watching the corn adapt generation after generation to the local environment there.

I think about this when I mow the lawn, too. The very same species that might grow wild in the woods outside town grows differently in town because it has adapted to being repetitively mowed by either growing closer to the ground or recovering quickly from the trauma.

I've done a lot of software simulations, and I'm a huge fan of . All these things fascinate me for similar reasons. Nature and evolution are beautiful and mysterious.

#openendedevolution #geneticalgorithms

Last updated 2 years ago

DigitalSreeni · @digitalsreeni
59 followers · 105 posts · Server mstdn.science

Unleash the power of optimization with ! Check out my latest article on Genetic Algorithms for optimization problems.

linkedin.com/pulse/genetic-alg

#geneticalgorithms #ai #machinelearning

Last updated 2 years ago

Larry O'Brien · @lobrien
128 followers · 338 posts · Server sigmoid.social

Interesting article about D-Wave "" annealing computers. My niche in the aughts was "" optimization (90% of the time it was bin-packing, technically). I started with and , but generally found approximation algorithms (Vazirani's book) to be most practical. PS It's a great niche.

#Quantum #scheduling #simulatedannealing #geneticalgorithms #softwaredevelopment

Last updated 2 years ago

Felipe Muñoz · @felipeml
14 followers · 20 posts · Server mathstodon.xyz

Hey there! I'm working on a seizure detection algorithm and I'm trying to decide which approach to take for selecting one solution from several in a n-dimensional space. I'm considering using a search algorithm like or simulated annealing, or a model like a decision tree or . I'm wondering which approach would be best for selecting one solution among many options. Any advice or recommendations would be greatly appreciated!😊

#neuralnetwork #machinelearning #geneticalgorithms

Last updated 2 years ago

Santa Fe Institute · @sfiscience
384 followers · 42 posts · Server mastodon.sdf.org

Re: and , @ricard_sole@twitter.com outlines a history stretching back into the work of W. Pitts, J. J. Hopfield, S. A. Kauffman, and others to examine the origin of attractor neural network models — a.k.a., "An EXTREME simplification of the reality."

#solidbrains #geneticalgorithms

Last updated 2 years ago

Finally! I adapt the implementation code of a paper from my project and now on and :partyparrot:

The article that I implemented is about

github.com/ttiagojm/GP-CNAS

#github #paperswithcode #neuralarchitecturesearch #neuralnets #geneticalgorithms

Last updated 2 years ago

Joseph Rhea (Author) · @JosephRhea
9 followers · 23 posts · Server mastodon.world

What are the most used hashtags for genetic algorithms ? I saw few people talking about this interesting topic!

Those -> ?

#EvolutionaryComputing #geneticalgorithms #geneticprogramming

Last updated 2 years ago

Germanunkol · @Germanunkol
40 followers · 26 posts · Server mastodon.gamedev.place

Another example of (sexual) reproduction in my genetic algorithm! If you look closely, you can easily see how children (front) inherit traits from their parents (back).

The white box is a placeholder for the player. Can't wait to get to the point where a whole family of will let you know what they think of you raiding their !

#rpg #dna #geneticalgorithms #genetics #procgen #procedural #screenshots #gamedev #wip #caves #creatures

Last updated 2 years ago

Tiago Martins · @tiago_j_m
53 followers · 40 posts · Server sigmoid.social

New people that follow me or that are seeing this toot, in what fields you apply/research ?
For now I’m researching about CNAS (Convolution Neural Architecture Search) using like I said some toots ago 😆.

And you ?

#ai #geneticalgorithms

Last updated 2 years ago

Germanunkol · @Germanunkol
32 followers · 22 posts · Server mastodon.gamedev.place

over six generations.

The driving force was a target function rewarding long legs, which I think becomes pretty obvious after generation 3.

In each generation, I sorted by their score from highest (left) to lowest (right) and only let the two highest-scoring creatures reproduce (note the parent-child relation ships shown as green lines).

#arachnophobia #solodev #indiedev #gamedev #wip #mutation #dna #geneticalgorithms #creatures #evolution

Last updated 2 years ago

Tiago Martins · @tiago_j_m
52 followers · 34 posts · Server sigmoid.social

A nice review about genetic operators: link.springer.com/article/10.1

Probably the most important table is Table 6 showing the best combinations of them.

#geneticprogramming #geneticalgorithms

Last updated 2 years ago

Germanunkol · @Germanunkol
32 followers · 22 posts · Server mastodon.gamedev.place

Showing off family relationships!

Note how children resemble their parents, this is only possible because all creatures are created from DNA strings and the parent's DNA is mixed to create the children...

#evolution #mutations #indiedev #b3d #blender3d #gamedev #dna #geneticalgorithms #genetics

Last updated 2 years ago