Frank Wappler · @MisterRelativity
9 followers · 26 posts · Server mathstodon.xyz
Frank Wappler · @MisterRelativity
9 followers · 24 posts · Server mathstodon.xyz

Now integrating:

\(\int a\,{\rm d}t=\int\frac{{\rm d}v}{(\sqrt{1-(v/c)^2})^3},\)

\(a\, t=\frac{v}{\sqrt{1-(v/c)^2}},\)

\(\frac{{\rm d}x}{{\rm d}t}:=v=\frac{a\, t}{\sqrt{1+(a/c\, t)^2}}.\)

Integrating (and normalizing) again:

\(\int{\rm d}x =\int{\rm d}t\,\frac{a\, t}{\sqrt{1+(a/c\, t)^2}},\)

\(x=(c^2/a)\, (\sqrt{1+(a/c\, t)^2}-1) \), as shown in (2/7).

The main point follows: expressing constant \(a\) through intervals: ...

(4/7)

#hyperbolicmotion #teachrelativity #relativity #spacetime

Last updated 3 years ago

Frank Wappler · @MisterRelativity
9 followers · 23 posts · Server mathstodon.xyz

Digression to show that \(a\) is the magnitude of \(A\)'s proper acceleration (i.e. wrt. the respective momentarily co-moving inertial frame):

\(\rm d v := \)
\(\frac{v + (a \, \rm d \tau)}{1 + (v/c) \, (a \, \rm d \tau)/c} - v = \)
\(\frac{(a \, \rm d \tau) \, (1 - (v/c)^2)}{1 + (v/c) \, (a \, \rm d \tau)/c} \approx \)
\(a \, \rm d \tau) \, (1 - (v/c)^2) = \)
\(a \, \rm d t) \sqrt{1 - (v/c)^2} \, (1 - (v/c)^2).\)

(3/7)

#spacetime #hyperbolicmotion #teachrelativity #relativity

Last updated 3 years ago

Frank Wappler · @MisterRelativity
9 followers · 22 posts · Server mathstodon.xyz

of participant \(A\) in a "flat region", in terms of Minkowski coordinates \((t, x)\) (which are of course adapted to the geometric relations between members of an \(\mathcal F\)):

\(x_{\mathcal F}[ \, A \, ] = (c^2/a) \, \left(\sqrt{1+(a/c\, t_{\mathcal F}[ \, A \, ])^2}-1\right) \)

which can be re-arranged to "the canonical form" of an [hyperbola equation](en.wikipedia.org/wiki/Hyperbol) (wrt. Cartesian coordinates).

(2/7)

#teachrelativity #relativity #inertialframe #spacetime #hyperbolicmotion

Last updated 3 years ago

Frank Wappler · @MisterRelativity
9 followers · 21 posts · Server mathstodon.xyz

Elaborating on the utility of hyperbolas (hat tip to Joe Heafner) and the utility of [Cayley-Menger determinants (CMDs)](en.wikipedia.org/wiki/Cayley%E) for expressing (defining?) "acceleration" (of an identifiable "material point", or participant) as radius of curvature of the corresponding in "flat" (pseudo-plane) 1+1 --

for , magnitude and direction of acceleration are constant.
In terms of Minkowski coordinates: ...

(1/7)

#teachrelativity #relativity #hyperbolicmotion #spacetime #worldline

Last updated 3 years ago