[BR] Como calcular integrais definidas e indefinidas no Python
[EN] How to Calculate #Definite and #Indefinite #Integrals in #Python
https://www.freecodecamp.org/news/calculate-definite-indefinite-integrals-in-python/
#definite #indefinite #integrals #python #freecodecamp
Le constructeur aéro Aura Aero a effectué le premier vol de son avion biplace Integral S, le 28 juillet 2023, à 10h20. Un soulagement pour tous ceux qui suivent ce programme @auraaero @aero_aura @FFAeronautique #plane #IntegralS #avgeek
https://www.aerobuzz.fr/aviation-generale/premier-vol-de-lintegral-s-daura-aero/
HÖLDER'S INEQUALITY:
If \(\mathcal{S}\) is a measurable subset of \(\mathbf{R}^n\) with the Lebesgue measure, and \(\eta\) and \(\xi\) are measurable real- or complex-valued functions on \(\mathcal{S}\), then
\[\displaystyle\left(\int_\mathcal{S}|\eta(x)\xi(x)|\ \mathrm{d}x\right)^{ab}\leq\left(\int_\mathcal{S}|\eta(x)|^a\ \mathrm{d}x\right)^b\left(\int_\mathcal{S}|\xi(x)|^b\ \mathrm{d}x\right)^a\]
where, \((a,b)\in(1,\infty)^2\) with \(1/a+1/b=1\).
#HolderInequality #LebesgueMeasure #Integrals
#integrals #lebesguemeasure #holderinequality
HÖLDER'S INEQUALITY:
If \(\mathcal{S}\) is a measurable subset of \(\mathbf{R}^n\) with the Lebesgue measure, and \(\eta\) and \(\xi\) are measurable real- or complex-valued functions on \(\mathcal{S}\), then
\[\displaystyle\left(\int_\mathcal{S}|\eta(x)\xi(x)|\ \mathrm{d}x\right)^{ab}=\left(\int_\mathcal{S}|\eta(x)|^a\ \mathrm{d}x\right)^b\left(\int_\mathcal{S}|\xi(x)|^b\ \mathrm{d}x\right)^a\]
where, \((a,b)\in(1,\infty)^2\) with \(1/a+1/b=1\).
#HolderInequality #LebesgueMeasure #Integrals
#integrals #lebesguemeasure #holderinequality