Marco Zocca · @ocramz
180 followers · 216 posts · Server sigmoid.social

and it kind of saddens me that genuinely excellent thinkers like Neel Nanda are putting their writeups on on LW, which ranges from noobish to terrible.

#interpretability #machinelearning #ai #mechanisticinterpretability

Last updated 1 year ago

New Submissions to TMLR · @tmlrsub
198 followers · 694 posts · Server sigmoid.social

Unlock the Black Box by Interpreting Graph Convolutional Networks via Additive Decomposition

openreview.net/forum?id=sroF8h

#gnn #subgraph #interpretability

Last updated 1 year ago

Published papers at TMLR · @tmlrpub
550 followers · 534 posts · Server sigmoid.social

TabCBM: Concept-based Interpretable Neural Networks for Tabular Data

Mateo Espinosa Zarlenga, Zohreh Shams, Michael Edward Nelson, Been Kim, Mateja Jamnik

Action editor: Pin-Yu Chen.

openreview.net/forum?id=TIsrnW

#concepts #explanations #interpretability

Last updated 1 year ago

CottonEyedJo · @Social
29 followers · 193 posts · Server charli.io

🔍 Process supervision takes us closer to understanding the black box of AI. By rewarding each step, we unravel the model's decision-making process. It's a step forward in transparency and interpretability. Exciting times ahead! 🧠🔓🔍

#processsupervision #transparency #interpretability #aiinsights

Last updated 1 year ago

Published papers at TMLR · @tmlrpub
518 followers · 417 posts · Server sigmoid.social

Interpretable Mixture of Experts

Aya Abdelsalam Ismail, Sercan O Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, Tomas Pfister

Action editor: Frederic Sala.

openreview.net/forum?id=DdZoPU

#interpretability #interpretable #experts

Last updated 1 year ago

New Submissions to TMLR · @tmlrsub
170 followers · 492 posts · Server sigmoid.social

TabCBM: Concept-based Interpretable Neural Networks for Tabular Data

openreview.net/forum?id=TIsrnW

#concepts #interpretability #explanations

Last updated 2 years ago

New Submissions to TMLR · @tmlrsub
161 followers · 416 posts · Server sigmoid.social
Jim Donegan âś… · @jimdonegan
1433 followers · 4100 posts · Server mastodon.scot
marco · @mc
578 followers · 119 posts · Server sigmoid.social

The TAYSIR competition about extracting small, interpretable models from neural language models will also be hosted at ICGI!

remieyraud.github.io/TAYSIR/

The first CFP is available: remieyraud.github.io/TAYSIR/TA

#nlp #nlproc #cfp #interpretability #Automata #languagemodels

Last updated 2 years ago

marco · @mc
578 followers · 118 posts · Server sigmoid.social

There are a four invited speakers, but I am only personally familiar with three (Cyril Allauzen @ Google, Will Merrill @ NYU/Google, and Dana Angluin @ Yale).

These three talks should be fantastic, especially if you are interested in , , and in neural language models!

(Plugging flann.super.site/ if those sound cool to you)

#Automata #formallanguages #interpretability

Last updated 2 years ago

· @Techronic9876
86 followers · 1167 posts · Server sigmoid.social

OSS community doing good work on in the quest for realistic eyes and hands in diffusion models— they’ve traced the problem back to the encoder needing better training

stable-diffusion-art.com/how-t

#interpretability

Last updated 2 years ago

Conor O'Sullivan · @conorosully
157 followers · 187 posts · Server sigmoid.social

My new article in @towardsdatascience

IML can increase/improve:
- Accuracy
- Performance in production
- Trust
- The reach of ML
- Storytelling
- Knowledge

Would you add anything?

No paywall link:
towardsdatascience.com/the-6-b

#DataScience #MachineLeaning #iml #xai #interpretability #explainability

Last updated 2 years ago

marco · @mc
557 followers · 111 posts · Server sigmoid.social

An interesting upcoming challenge on extracting simple and interpretable models (e.g., finite-state machines, random forests, etc.) from already-trained neural language models:

remieyraud.github.io/TAYSIR/

Some potential background reading (please suggest more!):

- arxiv.org/abs/1711.09576
- direct.mit.edu/coli/article/47
- aclanthology.org/W19-3112/
- link.springer.com/article/10.1
- link.springer.com/article/10.1

#ml #Automata #interpretability

Last updated 2 years ago

PLOS Biology · @PLOSBiology
4555 followers · 553 posts · Server fediscience.org
JosĂ© Oramas · @jaom7
40 followers · 8 posts · Server sigmoid.social
Conor O'Sullivan · @conorosully
148 followers · 166 posts · Server sigmoid.social

Working on a new article "Debugging a PyTorch Image Model with SHAP"

A mini-car takes images of a track as input. Using these, a model is used to make predictions which then turn the car.

Using SHAP, we can see the model uses background pixels when making predictions. This causes problems when we move the car to a new location.

Should be out next week :)

#DataScience #MachineLeaning #shap #iml #xai #interpretability

Last updated 2 years ago

OndĹ™ej CĂ­fka · @cifkao
23 followers · 2 posts · Server sigmoid.social

We present *context length probing*, an embarrassingly simple, model-agnostic, explanation technique for causal (-like) language models.

The idea is simply to check how predictions change as the left-hand context is extended token by token. This allows assigning "differential importance scores" to different contexts as shown in the demo.

Paper: arxiv.org/abs/2212.14815
Demo: cifkao.github.io/context-probi

🧵1/4

#blackbox #gpt #explainability #interpretability #transformer #nlproc

Last updated 2 years ago

Stella Biderman · @stellaathena
103 followers · 8 posts · Server sigmoid.social

What do LLMs learn over the course of training? How do these patterns change as you scale? To help answer these questions, we are releasing a Pythia, suite of LLMs + checkpoints designed for research on interpretability and training dynamics!

The models have sizes ranging from 19M to 13B parameters, contain 143 intermediate checkpoints, and were trained on the same exact data in the same exact order.

github.com/EleutherAI/pythia

#ml #ai #nlproc #interpretability #eleutherai

Last updated 2 years ago

Jenn Wortman Vaughan · @jenn
273 followers · 2 posts · Server sigmoid.social

Heard I should write an ? Ok.

Hi! I'm Jenn. I do research on at Microsoft Research NYC. I'm in the FATE group and co-chair Microsoft's Aether working group on transparency.

My research background is in theory and algorithmic econ, but since my mid-career crisis I've focused on human-centered approaches to , , & of AI.

I'm into that augments, rather than replaces, human abilities.

jennwv.com

#Introduction #responsibleai #machinelearning #transparency #interpretability #fairness #ai

Last updated 2 years ago