Provably Convergent Policy Optimization via Metric-aware Trust Region Methods
Jun Song, Niao He, Lijun Ding, Chaoyue Zhao
Action editor: Amir-massoud Farahmand.
#optimality #reinforcement #lagrangian
Provably Convergent Policy Optimization via Metric-aware Trust Region Methods
#optimality #reinforcement #lagrangian
Will a block sliding down a parabola lose contact? Here is my #lagrangian constraint video
My interests:
#physics
#gravitation
#generalrelativity
#gravity
#quantum
#quantumtheory
#quantumgravity
#unification
#finaltheory
#unifiedtheory
#strandmodel
#maximumforce
#teachingphysics
#physicsteaching
#Lagrangian
#physics #gravitation #generalrelativity #gravity #quantum #quantumtheory #quantumgravity #unification #finaltheory #unifiedtheory #strandmodel #maximumforce #teachingphysics #physicsteaching #lagrangian
Hints at approximating dissipative systems via #Lagrangian ones, by using #gyroscopic couplings. My last contribute with some friends to Memocs:
https://msp.org/memocs/2022/10-3/p04.xhtml
#introduction part zwei...because I'm long-winded and blather about myself. Undergraduate pursuits were #plantecology and #botany. I got interested in #atmosphericscience when I worked in an #acidrain lab at #UVa. Late in life I did a masters in #Atmosphericscience programming a #Lagrangian model of tracer #dispersion in a #convective atmospheric #boundarylayer. I'm also interested in #ecosystem process models, #firebehavior, #dynamicvegetationmodels, and #coupledfireatmosphere models.
#introduction #PlantEcology #botany #atmosphericscience #acidrain #UvA #lagrangian #dispersion #convective #boundarylayer #ecosystem #firebehavior #dynamicvegetationmodels #coupledfireatmosphere
\[ \documentclass[a4paper,10pt]{scrartcl}
\usepackage{amsmath,amssymb,cancel}
\begin{document}
I want to test the LaTeX functionality of mathstodon. Let's start things off with the #standardmodel #lagrangian of #particlephysics
\begin{align*}
\mathcal{L} &= - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
&\phantom{{}=}+ i \bar{\psi} \cancel{D} \psi + h.c. \\
&\phantom{{}=}+ \bar{\psi}_i y_{ij} \psi_j \phi + h.c. \\
&\phantom{{}=}+ |D_\mu \phi|^2 - V(\phi)
\end{align*}
\end{document} \]
#particlephysics #lagrangian #standardmodel
New #physics video from my #classicalMechanics series on #Lagrangian - a half swinging atwood machine
#physics #classicalmechanics #lagrangian