Bon après midi à tous. 📖📚
#mastolecture #mardilecture #polars #bibliotheque #LectureEnCours #mastolivres
#mastolivres #LectureEnCours #bibliotheque #polars #mardilecture #mastolecture
#VendrediLecture
M.J. Arlidge, 2 #polars : Am stram gram et Il court, il court, le furet.
Pour les 2, j'ai failli laisser tomber.
L'intrigue et l'enquête sont bien fichues. Alors : L'écriture pas terrible ? pas seulement.
La flique principale porte une épaisse carapace. Cette carapace englobe les livres, j'ai eu du mal à y entrer.
L'enquête oui, mais aucun plaisir à suivre les personnages, abstraits, sans profondeur. Même Southampton, lieu des 2 romans, pourrait être n'importe où.
OK sans plus.
I've written a blog post diving deep into the differences between #Polars and #pandas, and what are the best use cases for each of these dataframe libraries (spoiler alert: the answer is not always Polars 😅).
https://blog.jetbrains.com/dataspell/2023/08/polars-vs-pandas-what-s-the-difference/
Polars 0.19 is out 🐻❄️ https://github.com/pola-rs/polars/releases/tag/py-0.19.0
Highlights:
- `sink_csv` for `LazyFrame`
- "massive expansion" of database support
- Rename `groupby` to `group_by` and some other methods (the old ones are deprecated ❗)
- Read/write support for Arrow IPC streams in DataFrames
- Lots of deprecated functionalities got removed
Get it now while it's hot!
#python #PyData #polars #datascience
@samharrison7
Something that you can easily avoid by using your local #Python with #pandas or #polars and other available today packages. I don't see any benefit on this announcement...
Here's another web app built aiming towards non-coding lab chemists (my two cents towards this) - https://jhylin.github.io/Data_in_life_blog/posts/15_Molviz/Molviz.html
Quick features of the app:
- viewing and highlighting substructures in 2D compound images (for deployed version)
- viewing, saving and highlighting 2D images (for localhost version)
For interactive data table part: https://jhylin.github.io/Data_in_life_blog/posts/15_Molviz/itables.html
Big thanks to #rdkit, #datamol, #pyshiny, #itables, #pandas, #polars & #python.
#rdkit #datamol #pyshiny #itables #pandas #polars #python
Polars is a lightning fast DataFrame library/in-memory query engine with parallel execution and cache efficiency. And now you can use is with the tidyverse syntax: https://www.tidypolars.etiennebacher.com/ #rstats #polars #optimisation
For #metasynth (:python: pkg for generating synthetic tables from sensitive data) we're using #polars (https://pola.rs) as our data frame library.
I had to get used to it (it's not #tidyverse ) but I'm really liking how consistent (and fast!) it is. Also good thought went into data types. For this, I like it much better than #pandas!
The only minor problem is that it is not yet easy to find answers to some basic questions, because there are not that many users.
Use polars everyone!
#metasynth #polars #tidyverse #pandas
5 Latest Tools You Should Be Using With Python for Data Science.
🗂️ The article provides insightful details on tools like ConnectorX, DuckDB, Optimus, Polars, and Snakemake which could enhance data wrangling, querying, manipulation, and workflow automation capabilities.
1. 🧰 ConnectorX: Simplifying the Loading of Data
2. 🧰 DuckDB: Empowering Analytical Query Workloads
3. 🧰 Optimus: Streamlining Data Manipulation
4. 🧰 Polars: Accelerating DataFrames
5. 🧰 Snakemake: Automating Data Science Workflows
https://www.makeuseof.com/latest-python-data-science-tools/
#Python #DataScience #ConnectorX #DuckDB #Optimus #Polars #Snakemake #Programming #DataAnalysis #Productivity
#python #datascience #connectorx #duckdb #optimus #polars #snakemake #programming #dataanalysis #productivity
📝 "Pills dataset - Part 2"
👤 Jennifer HY Lin (@jhylin)
🔗 https://jhylin.github.io/Data_in_life_blog/posts/09_Pills/Rust_polars_pills_df.html
#pyladies #python #dataanalyticsprojects #pillsdatasetseries #polars #plotly #jupyter
#pyladies #python #dataanalyticsprojects #pillsdatasetseries #polars #plotly #jupyter
#VendrediLecture
'Kabukicho' de Dominique Sylvain.
Le Kawaguchi était une courte pause dans ma (qqf re)lecture des #polars de D. Sylvain.
J'ai attaqué Kabukicho, que je n'avais pas encore lu.
Un polar plus noir que ses autres, qui se déroule à Tokyo, dans le quartier chaud qui donne son nom au titre. Des personnages fouillés et complexes, une histoire prenante, les codes du Japon.
Je me régale.
Team "abonnés en novembre 2022, ils reviennent".
J'en profite pour faire mon #intro.
Julie, aime la #lecture ( #polars et #thrillers principalement), mon #chien la #randonnee et la #montagne en général. Je cours un peu aussi #running et je bois de la #biere
(Re)bonjour !
#intro #lecture #polars #thrillers #chien #randonnee #montagne #running #biere
I was wondering what can I do to keep practicing #rustlang (because I don't have much time nowadays).
For me it should be a tiny side-project, something that I could finish in a weekend (otherwise maybe I wouldn't even start it)... and I remembered that I work with #python #pandas in a daily basis and I could try #polars to see the differences in syntax and performance.
Maybe tinkering around with some data is my next #rustlang task 🤔
#rustlang #python #pandas #polars
Check out Patrick Hoefler's new blog about his experience #benchmarking #pandas and #Polars:
https://levelup.gitconnected.com/benchmarking-pandas-against-polars-from-a-pandas-pov-554416a863db
It has some nice details about how to optimize pandas code ✨
TIL In #Python #polars is a faster alternative to #pandas. Sadly, it has a different API: https://towardsdatascience.com/pandas-vs-polars-a-syntax-and-speed-comparison-5aa54e27497e