Jon Awbrey · @Inquiry
60 followers · 203 posts · Server mathstodon.xyz
Jon Awbrey · @Inquiry
59 followers · 195 posts · Server mathstodon.xyz
Jon Awbrey · @Inquiry
56 followers · 178 posts · Server mathstodon.xyz

• 6
inquiryintoinquiry.com/2020/03

The \(\{p:\mathbb{B}^n\to \mathbb{B}\}=(\mathbb{B}^n \xrightarrow{p}\mathbb{B})\) may be written as products:

\[\prod_{i=1}^n e_i~=~e_1 \cdot\ldots\cdot e_n~\text{where}~\left\{\begin{matrix}e_i=a_i\\ \text{or}\\ e_i=1\end{matrix}\right\}~\text{for}~i=1~\text{to}~n.\]

To get a sense of this family's place we'll next draw the for the 3 variable case.


#DifferentialLogic #LogicalGraphs #logic #venndiagrams #positivepropositions #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
38 followers · 131 posts · Server mathstodon.xyz

• 4.11
inquiryintoinquiry.com/2020/02

Linearity, Positivity, Singularity are relative to the basis \(\mathcal{A}.\) on one basis do not remain so if new features are added to the basis. A even within the same pairwise options \(\{a_i\}\cup\{\texttt{(}a_i\texttt{)}\}\) changes the sets of & as both are decided by the choice of , in effect choosing a cell as origin.

#logic #basicpropositions #positivepropositions #linearpropositions #basischange #singularpropositions #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
34 followers · 119 posts · Server mathstodon.xyz

• 4.7
inquiryintoinquiry.com/2020/02

The \(\{p : \mathbb{B}^n \to \mathbb{B}\} = (\mathbb{B}^n \xrightarrow{p} \mathbb{B})\)may be written as products:

\[\prod_{i=1}^n e_i ~=~ e_1 \cdot \ldots \cdot e_n ~\text{where}~ \left\{ \begin{matrix} e_i = a_i \\ \text{or} \\ e_i = 1 \end{matrix} \right\} ~\text{for}~ i = 1 ~\text{to}~ n.\]


#BooleanFunctions #PropositionalCalculus #DifferentialLogic #LogicalGraphs #logic #positivepropositions #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
31 followers · 110 posts · Server mathstodon.xyz

• 4.5
inquiryintoinquiry.com/2020/02

Each of the families — , , — is naturally parameterized by the coordinate \(n\)-tuples in \(\mathbb{B}^n\) and falls into \(n+1\) ranks, with a \(\tbinom{n}{k}\) giving the number of propositions having rank or weight \(k\) in their class.

#binomialcoefficient #singularprpositions #positivepropositions #linearpropositions #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
30 followers · 103 posts · Server mathstodon.xyz

• 4.4
inquiryintoinquiry.com/2020/02

Among the \(2^{2^n}\) propositions in \([a_1, \ldots, a_n]\) are several families numbering \(2^n\) propositions each which take on special forms with respect to the basis \(\{a_1, \ldots, a_n \}.\) Three families are especially prominent in the present context, the , the , and the .


#BooleanFunctions #PropositionalCalculus #DifferentialLogic #LogicalGraphs #logic #singularpropositions #positivepropositions #linearpropositions #DifferentialPropositionalCalculus

Last updated 2 years ago