Jon Awbrey · @Inquiry
79 followers · 252 posts · Server mathstodon.xyz

• 7.3
inquiryintoinquiry.com/2020/03

Figure 10. for on 3 Variables
inquiryintoinquiry.files.wordp

Rank 3. The cell \(pqr.\)

Rank 2. The 3 cells \(pr\texttt{(}q\texttt{)}, qr\texttt{(}p\texttt{)}, pq\texttt{(}r\texttt{)}.\)

Rank 1. The 3 cells \(q\texttt{(}p\texttt{)(}r\texttt{)}, p\texttt{(}q\texttt{)(}r\texttt{)}, r\texttt{(}p\texttt{)(}q\texttt{)}.\)

Rank 0. The cell \(\texttt{(}p\texttt{)(}q\texttt{)(}r\texttt{)}.\)

#logic #singularpropositions #venndiagrams #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
74 followers · 244 posts · Server mathstodon.xyz
Jon Awbrey · @Inquiry
67 followers · 222 posts · Server mathstodon.xyz

• 7.1
inquiryintoinquiry.com/2020/03

The \(\{\mathbf{x}:\mathbb{B}^n\to\mathbb{B}\}=(\mathbb{B}^n\xrightarrow{s}\mathbb{B})\) may be written as products:

\[\prod_{i=1}^n e_i~=~e_1\cdot\ldots\cdot e_n~\text{where}~\left\{\begin{matrix}e_i=a_i\\\text{or}\\e_i=\texttt{(}a_i\texttt{)}\end{matrix}\right\}~\text{for}~i=1~\text{to}~n.\]

Related Topics —

#BooleanFunctions #PropositionalCalculus #DifferentialLogic #LogicalGraphs #logic #singularpropositions #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
64 followers · 218 posts · Server mathstodon.xyz
Jon Awbrey · @Inquiry
38 followers · 131 posts · Server mathstodon.xyz

• 4.11
inquiryintoinquiry.com/2020/02

Linearity, Positivity, Singularity are relative to the basis \(\mathcal{A}.\) on one basis do not remain so if new features are added to the basis. A even within the same pairwise options \(\{a_i\}\cup\{\texttt{(}a_i\texttt{)}\}\) changes the sets of & as both are decided by the choice of , in effect choosing a cell as origin.

#logic #basicpropositions #positivepropositions #linearpropositions #basischange #singularpropositions #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
34 followers · 122 posts · Server mathstodon.xyz

• 4.10
inquiryintoinquiry.com/2020/02

The \(a_i : \mathbb{B}^n \to \mathbb{B}\) are both linear and positive. So these two kinds of propositions, the linear and the positive, may be viewed as two different ways of generalizing the class of basic propositions.

Related Subjects —

# LinearPropositions


#BooleanFunctions #PropositionalCalculus #DifferentialLogic #LogicalGraphs #logic #singularpropositions #simplepropositions #coordinatepropositions #basicpropositions #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
34 followers · 120 posts · Server mathstodon.xyz

• 4.8

The \(\{\mathbf{x} : \mathbb{B}^n \to \mathbb{B}\} = (\mathbb{B}^n \xrightarrow{s} \mathbb{B})\) may be written as products:

\[\prod_{i=1}^n e_i ~=~ e_1 \cdot \ldots \cdot e_n ~\text{where}~ \left\{ \begin{matrix} e_i = a_i \\ \text{or} \\ e_i = \texttt{(} a_i \texttt{)} \end{matrix} \right\} ~\text{for}~ i = 1 ~\text{to}~ n.\]

Related Subjects —

#BooleanFunctions #PropositionalCalculus #DifferentialLogic #LogicalGraphs #logic #singularpropositions #DifferentialPropositionalCalculus

Last updated 2 years ago

Jon Awbrey · @Inquiry
30 followers · 103 posts · Server mathstodon.xyz

• 4.4
inquiryintoinquiry.com/2020/02

Among the \(2^{2^n}\) propositions in \([a_1, \ldots, a_n]\) are several families numbering \(2^n\) propositions each which take on special forms with respect to the basis \(\{a_1, \ldots, a_n \}.\) Three families are especially prominent in the present context, the , the , and the .


#BooleanFunctions #PropositionalCalculus #DifferentialLogic #LogicalGraphs #logic #singularpropositions #positivepropositions #linearpropositions #DifferentialPropositionalCalculus

Last updated 2 years ago