Tail of the zeta function \(\zeta(s)\):

\[\displaystyle\sum_{n\geq N}\dfrac{1}{n^s}=\dfrac{N^{1-s}}{s-1}+\dfrac{1}{2N^s}-s\int_N^\infty\left(\{t\}-\dfrac{1}{2}\right)t^{-s-1}\ \mathrm{d}t\]

#analysis #numbertheory #maths #function #tailoffunction #riemannzetafunction #zetafunction

Last updated 2 years ago