Detecting incidental correlation in multimodal learning via latent variable modeling
Taro Makino, Yixin Wang, Krzysztof J. Geras, Kyunghyun Cho
Action editor: Thang Bui.
#Multimodal #modality #variational
Variational Elliptical Processes
Maria Margareta Bånkestad, Jens Sjölund, Jalil Taghia, Thomas B. Schön
Action editor: Sinead Williamson.
#gaussian #variational #likelihood
Pathwise gradient variance reduction in variational inference via zero-variance control variates
#variational #gradient #estimators
'Variational Inverting Network for Statistical Inverse Problems of Partial Differential Equations', by Junxiong Jia, Yanni Wu, Peijun Li, Deyu Meng.
http://jmlr.org/papers/v24/22-0006.html
#generative #bayesian #variational
#generative #bayesian #variational
'Variational Gibbs Inference for Statistical Model Estimation from Incomplete Data', by Vaidotas Simkus, Benjamin Rhodes, Michael U. Gutmann.
http://jmlr.org/papers/v24/21-1373.html
#variational #models #gibbs
'Variational Inference for Deblending Crowded Starfields', by Runjing Liu, Jon D. McAuliffe, Jeffrey Regier.
http://jmlr.org/papers/v24/21-0169.html
#galaxies #starnet #variational
#galaxies #starnet #variational
PAVI: Plate-Amortized Variational Inference
#generative #variational #parameterized
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz, Philipp Dahlinger, Zihan Ye, Michael Volpp, Gerhard Neumann
Action editor: George Papamakarios.
#variational #mixture #gradient
DPVIm: Differentially Private Variational Inference Improved
#variational #gradients #gradient
Sample Average Approximation for Black-Box Variational Inference
#variational #optimization #hyperparameter
'Monotonic Alpha-divergence Minimisation for Variational Inference', by Kamélia Daudel, Randal Douc, François Roueff.
http://jmlr.org/papers/v24/21-0249.html
#variational #divergence #multimodal
#variational #divergence #Multimodal
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, Christian A Naesseth
#generative #flow #variational
Differentially private partitioned variational inference
Mikko A. Heikkilä, Matthew Ashman, Siddharth Swaroop, Richard E Turner, Antti Honkela
#privacy #private #variational
'On the geometry of Stein variational gradient descent', by Andrew Duncan, Nikolas Nüsken, Lukasz Szpruch.
http://jmlr.org/papers/v24/20-602.html
#stein #kernels #variational
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni, Kenta Takatsu, Justin Domke, Daniel Sheldon
#variational #batches #inference
'Discrete Variational Calculus for Accelerated Optimization', by Cédric M. Campos, Alejandro Mahillo, David Martín de Diego.
http://jmlr.org/papers/v24/21-1323.html
#variational #symplectic #optimization
#variational #symplectic #optimization
'A Relaxed Inertial Forward-Backward-Forward Algorithm for Solving Monotone Inclusions with Application to GANs', by Radu I. Bot, Michael Sedlmayer, Phan Tu Vuong.
http://jmlr.org/papers/v24/20-267.html
#gans #generative #variational
#GANs #generative #variational
Differentially private partitioned variational inference
#privacy #private #variational
"GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions"
https://arxiv.org/abs/2206.05183
#MachineLearning #DeepLearning #Variational #Autoencoder #DynamicalSystems
#arxivfeed #machinelearning #deeplearning #variational #autoencoder #dynamicalsystems
New #preprint from us here at #Mila, work with the Lajoie Lab and BIOS Inc..
We develop a novel #variational #information #bottleneck approach specifically tailored for #predictive #deeplearning with two streams of #data where there is a small, but critical, #transferentropy between the two streams, something current systems can't capture:
#ml #ai #transferentropy #data #deeplearning #predictive #bottleneck #information #variational #mila #preprint