Fabrizio Musacchio · @pixeltracker
344 followers · 230 posts · Server sigmoid.social

Eliminating the middleman: You can apply the computation of the distance even more directly in (), eliminating the need for a discriminator.

🌎 fabriziomusacchio.com/blog/202

#wasserstein #wassersteingans #wgans #machinelearning

Last updated 1 year ago

Fabrizio Musacchio · @pixeltracker
344 followers · 230 posts · Server sigmoid.social
Fabrizio Musacchio · @pixeltracker
338 followers · 223 posts · Server sigmoid.social
Fabrizio Musacchio · @pixeltracker
338 followers · 223 posts · Server sigmoid.social

The distance (), sliced Wasserstein distance (), and the are common used to quantify the ‘distance’ between two distributions. This tutorial compares these three metrics and discusses their advantages and disadvantages.

🌎 fabriziomusacchio.com/blog/202

#wasserstein #emd #swd #l2norm #metrics #OptimalTransport #machinelearning

Last updated 1 year ago

Fabrizio Musacchio · @pixeltracker
338 followers · 223 posts · Server sigmoid.social

This tutorial takes a different approach to explain the distance () by approximating the with cumulative distribution functions (), providing a more intuitive understanding of the metric.

🌎 fabriziomusacchio.com/blog/202

#wasserstein #emd #cdf #OptimalTransport

Last updated 1 year ago

Fabrizio Musacchio · @pixeltracker
331 followers · 219 posts · Server sigmoid.social

Calculating the distance () 📈 can be computational costly when using . The algorithm provides a computationally efficient method for approximating the EMD, making it a practical choice for many applications, especially for large datasets 💫. Here is another tutorial, showing how to solve problem using the Sinkhorn algorithm in 🐍

🌎 fabriziomusacchio.com/blog/202

#wasserstein #emd #linearprogramming #sinkhorn #OptimalTransport #Python

Last updated 1 year ago

Fabrizio Musacchio · @pixeltracker
321 followers · 215 posts · Server sigmoid.social

The distance 📐, aka Earth Mover’s Distance (), provides a robust and insightful approach for comparing 📊. I’ve composed a tutorial 🐍 that explains the problem required to calculate EMD. It also shows how to solve the OT problem and calculate the EMD using the Python Optimal Transport (POT) library. Feel free to use and share it 🤗

🌎 fabriziomusacchio.com/blog/202

#wasserstein #emd #probabilitydistributions #Python #OptimalTransport

Last updated 1 year ago

New Submissions to TMLR · @tmlrsub
198 followers · 695 posts · Server sigmoid.social

Convergence of SGD for Training Neural Networks with Sliced Wasserstein Losses

openreview.net/forum?id=aqqfB3

#sgd #wasserstein #generative

Last updated 1 year ago

Published papers at TMLR · @tmlrpub
522 followers · 466 posts · Server sigmoid.social

An Explicit Expansion of the Kullback-Leibler Divergence along its Fisher-Rao Gradient Flow

Carles Domingo-Enrich, Aram-Alexandre Pooladian

Action editor: Murat Erdogdu.

openreview.net/forum?id=9pWjgQ

#wasserstein #langevin #rao

Last updated 1 year ago

JMLR · @jmlr
672 followers · 268 posts · Server sigmoid.social

'Controlling Wasserstein Distances by Kernel Norms with Application to Compressive Statistical Learning', by Titouan Vayer, Rémi Gribonval.

jmlr.org/papers/v24/21-1516.ht

#compressive #wasserstein #norms

Last updated 2 years ago

Published papers at TMLR · @tmlrpub
507 followers · 293 posts · Server sigmoid.social

Costs and Benefits of Fair Regression

Han Zhao

openreview.net/forum?id=v6anjy

#fairness #parity #wasserstein

Last updated 2 years ago

New Submissions to TMLR · @tmlrsub
161 followers · 406 posts · Server sigmoid.social

An Explicit Expansion of the Kullback-Leibler Divergence along its Fisher-Rao Gradient Flow

openreview.net/forum?id=9pWjgQ

#wasserstein #langevin #rao

Last updated 2 years ago

Published papers at TMLR · @tmlrpub
506 followers · 282 posts · Server sigmoid.social

Solving a Special Type of Optimal Transport Problem by a Modified Hungarian Algorithm

Yiling Xie, Yiling Luo, Xiaoming Huo

openreview.net/forum?id=k5m8xX

#complexity #wasserstein #transport

Last updated 2 years ago

Published papers at TMLR · @tmlrpub
495 followers · 211 posts · Server sigmoid.social

Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks

David Alvarez-Melis, Yair Schiff, Youssef Mroueh

openreview.net/forum?id=dpOYN7

#optimization #gradient #wasserstein

Last updated 2 years ago

Julien Tierny · @JulienTierny
20 followers · 4 posts · Server fosstodon.org
RTG 2088 · @RTG_2088
13 followers · 13 posts · Server mathstodon.xyz

Heinemann, F., Klatt, M. & Munk, A. Kantorovich–Rubinstein Distance and Barycenter for Finitely Supported Measures: Foundations and Algorithms. Appl Math Optim 87, 4 (2023).

doi.org/10.1007/s00245-022-099

-rubinstein

#kantorovich #wasserstein #barycenter #optimization #appliedmathematics #article

Last updated 2 years ago