Eliminating the middleman: You can apply the computation of the #Wasserstein distance even more directly in #WassersteinGANs (#WGANs), eliminating the need for a discriminator.
๐ https://www.fabriziomusacchio.com/blog/2023-07-30-wgan_with_direct_wasserstein_distance/
#wasserstein #wassersteingans #wgans #machinelearning
The #Wasserstein #metric (#EMD) can be used, to train #GenerativeAdversarialNetworks (#GANs) more effectively. This tutorial compares a default GAN with a #WassersteinGAN (#WGAN) trained on the #MNIST dataset.
๐ https://www.fabriziomusacchio.com/blog/2023-07-29-wgan/
#wasserstein #metric #emd #generativeadversarialnetworks #GANs #wassersteingan #wgan #mnist #machinelearning
Apart from #Wasserstein Distance (#EMD), other #metrics also play an important role in #MachineLearning tasks such as #clustering, #classification, and #InformationRetrieval. In this tutorial, you can find a discussion of five commonly used metrics: EMD, #KullbackLeiblerDivergence (KL Divergence), #JensenShannonDivergence (JS Divergence), #TotalVariationDistance (TV Distance), and #BhattacharyyaDistance.
๐ https://www.fabriziomusacchio.com/blog/2023-07-28-probability_density_metrics/
#wasserstein #emd #metrics #machinelearning #clustering #classification #informationretrieval #kullbackleiblerdivergence #jensenshannondivergence #totalvariationdistance #bhattacharyyadistance
The #Wasserstein distance (#EMD), sliced Wasserstein distance (#SWD), and the #L2norm are common #metrics used to quantify the โdistanceโ between two distributions. This tutorial compares these three metrics and discusses their advantages and disadvantages.
๐ https://www.fabriziomusacchio.com/blog/2023-07-26-wasserstein_vs_l2_norm/
#wasserstein #emd #swd #l2norm #metrics #OptimalTransport #machinelearning
This tutorial takes a different approach to explain the #Wasserstein distance (#EMD) by approximating the #EMD with cumulative distribution functions (#CDF), providing a more intuitive understanding of the metric.
๐ https://www.fabriziomusacchio.com/blog/2023-07-24-wasserstein_distance_cdf_approximation/
#wasserstein #emd #cdf #OptimalTransport
Calculating the #Wasserstein distance (#EMD) ๐ can be computational costly when using #LinearProgramming. The #Sinkhorn algorithm provides a computationally efficient method for approximating the EMD, making it a practical choice for many applications, especially for large datasets ๐ซ. Here is another tutorial, showing how to solve #OptimalTransport problem using the Sinkhorn algorithm in #Python ๐
๐ https://www.fabriziomusacchio.com/blog/2023-07-23-wasserstein_distance_sinkhorn/
#wasserstein #emd #linearprogramming #sinkhorn #OptimalTransport #Python
The #Wasserstein distance ๐, aka Earth Moverโs Distance (#EMD), provides a robust and insightful approach for comparing #ProbabilityDistributions ๐. Iโve composed a #Python tutorial ๐ that explains the #OptimalTransport problem required to calculate EMD. It also shows how to solve the OT problem and calculate the EMD using the Python Optimal Transport (POT) library. Feel free to use and share it ๐ค
๐ https://www.fabriziomusacchio.com/blog/2023-07-23-wasserstein_distance/
#wasserstein #emd #probabilitydistributions #Python #OptimalTransport
Convergence of SGD for Training Neural Networks with Sliced Wasserstein Losses
An Explicit Expansion of the Kullback-Leibler Divergence along its Fisher-Rao Gradient Flow
Carles Domingo-Enrich, Aram-Alexandre Pooladian
Action editor: Murat Erdogdu.
'Controlling Wasserstein Distances by Kernel Norms with Application to Compressive Statistical Learning', by Titouan Vayer, Rรฉmi Gribonval.
http://jmlr.org/papers/v24/21-1516.html
#compressive #wasserstein #norms
#compressive #wasserstein #norms
#fairness #parity #wasserstein
An Explicit Expansion of the Kullback-Leibler Divergence along its Fisher-Rao Gradient Flow
Solving a Special Type of Optimal Transport Problem by a Modified Hungarian Algorithm
Yiling Xie, Yiling Luo, Xiaoming Huo
#complexity #wasserstein #transport
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis, Yair Schiff, Youssef Mroueh
#optimization #gradient #wasserstein
Checkout the new #TopologyToolKit Example Website!
Dozens of #TopologicalDataAnalysis pipelines.
๐งโ๐Today, learn how to compute the #Wasserstein distance between the #PersistenceDiagrams of two datasets in 48 lines of #Python๐
https://topology-tool-kit.github.io/examples/persistenceDiagramDistance/
#DataScience #Machinelearning
#topologytoolkit #TopologicalDataAnalysis #wasserstein #persistencediagrams #python #datascience #machinelearning
Heinemann, F., Klatt, M. & Munk, A. KantorovichโRubinstein Distance and Barycenter for Finitely Supported Measures: Foundations and Algorithms. Appl Math Optim 87, 4 (2023).
https://doi.org/10.1007/s00245-022-09911-x
#article #appliedmathematics #optimization #barycenter #wasserstein #kantorovich-rubinstein
#kantorovich #wasserstein #barycenter #optimization #appliedmathematics #article