Tail of the zeta function \(\zeta(s)\):

\[\displaystyle\sum_{n\geq N}\dfrac{1}{n^s}=\dfrac{N^{1-s}}{s-1}+\dfrac{1}{2N^s}-s\int_N^\infty\left(\{t\}-\dfrac{1}{2}\right)t^{-s-1}\ \mathrm{d}t\]

#analysis #numbertheory #maths #function #tailoffunction #riemannzetafunction #zetafunction

Last updated 2 years ago

Johann-Tobias Schäg · @freemin7
121 followers · 733 posts · Server mast.hpc.social

There is this really awesome series on YouTube about the Riemann-Zeta function which is currently running and seems to want to explain all the mathematic objects related to it properly it would be awesome if you could show the video series some love while it's running. youtu.be/4bzSFNCiKrk

#mathematics #mathstodon #primenumbers #riemann #zetafunction

Last updated 2 years ago

David Meyer · @dmm
222 followers · 580 posts · Server mathstodon.xyz

I wrote a bit about the connection between the zeta function ζ(s) and the primes, a relationship discovered by Euler in 1737 (the so-called product formula or as Derbyshire calls it, the "golden key" [1]).

Some of my notes are here: davidmeyer.github.io/qc/Euler_. The LaTex source is here: overleaf.com/read/hvqdtdyftqpb.

As always, questions/comments/corrections/* greatly appreciated.

References
------------
[1] John Derbyshire. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. The National Academies Press, Washington, DC, 2003.

#euler #primes #goldenkey #zetafunction #math

Last updated 2 years ago

PRODUCTS OVER PRIME NUMBERS [2/2]:
\[\displaystyle\prod_{p\in\mathbb{P}}\left(1+\dfrac{1}{p(p+1)}\right)=\prod_{p\in\mathbb{P}}\dfrac{1-p^{-3}}{1-p^{-2}}=\dfrac{\zeta(2)}{\zeta(3)}=\dfrac{\pi^2}{6\zeta(3)}\]
\[\displaystyle\prod_{p\in\mathbb{P}}\left(1+\dfrac{1}{p(p-1)}\right)=\prod_{p\in\mathbb{P}}\dfrac{1-p^{-6}}{(1-p^{-2})(1-p^{-3})}=\dfrac{\zeta(2)\zeta(3)}{\zeta(6)}=\dfrac{315}{2\pi^4}\zeta(3)\]

#numbertheory #infiniteproduct #zetafunction #eulerproduct #riemannzetafunction #primeproducts

Last updated 3 years ago

SOME PRODUCTS OVER PRIME NUMBERS [1/2]:
\[\displaystyle\prod_{p\in\mathbb{P}}\dfrac{1}{1-p^{-s}}=\prod_{p\in\mathbb{P}}\left(\sum_{k=0}^\infty\dfrac{1}{p^{ks}}\right)=\sum_{n=1}^\infty\dfrac{1}{n^s}=\zeta(s)\]
\[\displaystyle\prod_{p\in\mathbb{P}}\dfrac{p^s+1}{p^s-1}=\prod_{p\in\mathbb{P}}\left(1+\frac{2}{p^s}+\frac{2}{p^{2s}}+\cdots\right)=\sum_{n=1}^\infty\dfrac{2^{\omega(n)}}{n^s}=\dfrac{\zeta(s)^2}{\zeta(2s)}\]

#infiniteproduct #zetafunction #riemannzetafunction #eulerproduct #primeproducts

Last updated 3 years ago

SOME PRODUCTS OVER PRIME NUMBERS [1/2]:
\[\displaystyle\prod_{p\in\mathbb{P}}\dfrac{1}{1-p^{-s}}=\prod_{p\in\mathbb{P}}\left(\sum_{k=0}^\infty\dfrac{1}{p^{ks}}\right)=\sum_{n=1}^\infty\dfrac{1}{n^s}=\zeta(s)\]
\[\displaystyle\prod_{p\in\mathbb{P}}\dfrac{p^s-1}{p^s+1}=\prod_{p\in\mathbb{P}}\left(1+\frac{2}{p^s}+\frac{2}{p^{2s}}+\cdots\right)=\sum_{n=1}^\infty\dfrac{2^{\omega(n)}}{n^s}=\dfrac{\zeta(s)^2}{\zeta(2s)}\]

#infiniteproduct #zetafunction #riemannzetafunction #eulerproduct #primeproducts

Last updated 3 years ago

SOME PRODUCTS OVER PRIME NUMBERS [1/2]:
\[\displaystyle\prod_{p\in\mathbb{P}}\dfrac{1}{1-p^{-s}}=\prod_{p\in\mathbb{P}}\left(\sum_{k=0}^\infty\dfrac{1}{p^{ks}}\right)=\sum_{n=1}^\infty\dfrac{1}{n^s}=\zeta(s)\]
\[\displaystyle\prod_{p\in\mathbb{P}}\dfrac{p^s+1}{p^s+1}=\prod_{p\in\mathbb{P}}\left(1+\frac{2}{p^s}+\frac{2}{p^{2s}}+\cdots\right)=\sum_{n=1}^\infty\dfrac{2^{\omega(n)}}{n^s}=\dfrac{\zeta(s)^2}{\zeta(2s)}\]

#infiniteproduct #zetafunction #riemannzetafunction #eulerproduct #primeproducts

Last updated 3 years ago

P.P. · @inerkor
0 followers · 22 posts · Server fosstodon.org
JordiGH · @JordiGH
709 followers · 20515 posts · Server mathstodon.xyz

Me looking at a formula of :ramanujan: Ramanujan: Yeah, just do partial fractions of the infinite sum, telescope two of the terms, and look at the remaining value of the .

Me counting stitches on my for DPNs: 48 divided by 3 is 18, right?

#knitting #zetafunction

Last updated 7 years ago